ADAPTIVE BACKGROUND DENGAN METODE GAUSSIAN MIXTURE MODELS UNTUK REAL-TIME TRACKING

Abstract: Saat ini, aplikasi motion tracking digunakan secara luas untuk banyak tujuan, seperti mendeteksi kemacetan dan menghitung berapa banyak orang yang masuk ke sebuah supermarket atau sebuah mall. Sebuah metode untuk memisahkan antara background dan obyek yang di-track dibutuhkan untuk melakukan motion tracking. Membuat aplikasi tracking pada background yang statis bukanlah hal yang sulit, namun apabila tracking dilakukan pada background yang tidak statis akan lebih sulit, dikarenakan perubahan background dapat dikenali sebagai area tracking. Untuk mengatasi masalah tersebut, dapat dibuat suatu aplikasi untuk memisahkan background dimana aplikasi tersebut dapat beradaptasi terhadap perubahan yang terjadi. Aplikasi ini dibuat untuk memisahkan background dengan menggunakan metode Gaussian Mixture Models (GMM). Metode GMM melakukan cluster data piksel dengan menggunakan warna background tiap piksel sebagai dasarnya. Setelah cluster dibentuk, dilakukan pencocokan input sebagai distribusi, dimana distribusi yang dominan dijadikan sebagai background. Aplikasi ini dibuat dengan menggunakan Microsoft Visual C 6.0. Hasil dari penelitian ini menunjukkan bahwa algoritma GMM dapat beradaptasi terhadap background. Hal ini dibuktikan dengan hasil pengujian yang sukses terhadap semua kondisi yang diberikan. Aplikasi ini dapat dikembangkan lebih lanjut supaya proses tracking dapat terintegrasi dengan background yang adaptive.
Kata Kunci: adaptive, background , Gaussian Mixture Models (GMM)
Penulis: Silvia Rostianingsih, Rudy Adipranata, Fredy Setiawan Wibisono
Kode Jurnal: jptinformatikadd080023

Artikel Terkait :