CLUSTER ANALYSIS UNTUK MEMPREDIKSI TALENTA PEMAIN BASKET MENGGUNAKAN JARINGAN SARAF TIRUAN SELF ORGANIZING MAPS (SOM)

Abstract: Dunia bola basket telah berkembang dengan pesat seiring dengan berjalannya waktu. Hal ini ditandai dengan munculnya berbagai macam dan jenis kompetisi dan pertandingan baik dunia maupun dalam negeri. Sehingga makin banyak dilahirkannya pemain berbakat dengan berbagai karakteristik permainan yang berbeda. Tuntutan bagi seorang pelatih/pemandu bakat, untuk dapat melihat secara jeli dalam memenuhi kebutuhan tim untuk membentuk tim yang solid. Dengan dibuatnya aplikasi ini, maka akan membantu proses analisis dan pengambilan keputusan bagi pelatih maupun pemandu bakat Aplikasi ini menggunakan algoritma Self Organizing Maps (SOM) untuk melakukan analisis cluster. Data real pemain NBA digunakan untuk keperluan proses training dan data real pemain Indonesia /pemain Universitas Kristen Petra untuk proses testing. Data pemain NBA dipersiapkan dengan melalui proses cleaning dan di transformasi ke bentuk yang dapat diolah oleh algoritma SOM. Kemudian data diolah menggunakan algoritma SOM untuk menghasilkan cluster-cluster data. Hasil cluster-cluster ini ditampilkan dalam bentuk yang mudah untuk dilihat dan digunakan sebagai analisis.Hasil tersebut dapat disimpan pula dalam bentuk file teks. Dengan menggunakan output dari aplikasi ini, yang berupa cluster pemain basket, pengambil keputusan dapat melihat statistik tiap cluster. Dengan menggunakan statistik tiap cluster, pelatih atau pemandu bakat dapat memprediksi statistik dan posisi di lapangan seorang pemain basket yang ditest, yang berada pada sebuah cluster tertentu. Informasi ini dapat membantu pelatih atau pemandu bakat dalam pengambilan keputusan.
Kata Kunci: cluster analysis, Self Organizing Maps (SOM), pemain basket
Penulis: Gregorius Satia Budhi, Liliana Liliana, Steven Harryanto
Kode Jurnal: jptinformatikadd080019

Artikel Terkait :