PENGEMBANGAN SISTEM PENGENALAN WAJAH DENGAN METODE PENGKLASIFIKASIAN HIBRID BERBASIS JARINGAN FUNGSI BASIS RADIAL DAN POHON KEPUTUSAN INDUKTIF

Abstract: Pengklasifikasian wajah berkaitan dengan variasi data misalnya detil - detil kecil dari wajah atau transformasi saat proses pengambilan citra. Pengklasifikasian wajah dengan metode hibrid menggabungkan pembelajaran berbasis Jaringan Fungsi Basis Radial (JFBR) dan Pohon Keputusan Induktif. JFBR digunakan sebagai metode pembelajaran dalam arsitektur jaringan syaraf tiruan. Untuk meningkatkan kemampuan pengenalan dilakukan pengklasifikasian pada Pohon Keputusan Induktif. Selain menjadi metode penghubung pada pengklasifikasian hibrid, Himpunan JFBR (HJFBR) digunakan untuk penyediaan atribut pada pengklasifikasian Pohon Keputusan Induktif. Uji coba dilakukan pada 50 obyek dengan total ± 500 citra wajah dalam format grayscale. Data dipilih dengan memberi variasi mimik wajah, kemiringan (rotasi) data ± 50 dan juga dipengaruhi oleh pencahayaan di dalam ataupun d iluar ruangan. Rata - rata peningkatan keakurasian positif benar yang diberikan arsitektur HJFBR dibanding JFBR sebesar ±13,86% untuk HJFBR1 dan ±15,93% untuk HJFBR2. Namun menurunkan keakurasian negatif benar sebesar ±5,8% untuk HJFBR1 dan ±5,6% untuk HJFBR2. Penambahan pohon keputusan induktif pada metode hibrid memberikan keuntungan selain tetap dapat meningkatkan keakurasian positif benar juga mampu mengatasi permasalahan sebelumnya tentang penurunan keakurasian negatif benar.
Kata kunci: pengenalan wajah, jaringan fungsi basis radial, pengklasifikasian hibrid, pohon keputusan induktif
Penulis: Rully Soelaiman, Diana Purwitasari, Ariadi Retno Tri Hayati
Kode Jurnal: jptinformatikadd050024

Artikel Terkait :

Jp Teknik Informatika dd 2005