Performansi Algoritma CODEQ dalam Penyelesaian Vehicle Routing Problem

Abstract: Genetic Algorithm, Tabu Search, Simulated Annealing, and Ant Colony Optimization showed a good performance in solving vehicle routing problem. However, the generated solution of  those  algorithms  was  changeable  regarding  on  the  input  parameter  of  each  algorithm. CODEQ is a new, parameter free meta-heuristic algorithm that had been successfully used to solve  constrained  optimization  problems,  integer  programming,  and  feed-forward  neural network. The purpose of this research are improving CODEQ algorithm to solve vehicle routing problem and testing the performance of the improved algorithm. CODEQ algorithm is started with population initiation as initial solution, generated of mutant vector for each parent in every iteration, replacement of parent by mutant when fitness function value of mutant is better than parent’s, generated of new vector for each iteration based on opposition value or chaos principle, replacement of worst solution by new vector when fitness function value of new vector is better, iteration  ceasing  when  stooping  criterion  is  achieved,  and  sub-tour  determination  based  on vehicle capacity constraint. The result showed that the average deviation of the best-known and the  best-test  value  is  6.35%.  Therefore,  CODEQ  algorithm  is  good  in  solving  vehicle  routing problem. 
Keywords: Algorithm, meta-heuristic, vehicle routing problem, CODEQ
Penulis: Annisa Kesy Garside, Satya Sudaningtyas
Kode Jurnal: jptindustridd140439

Artikel Terkait :