Prediction of Missing Streamflow Data using Principle of Information Entropy

Abstract: Incomplete (missing) of streamflow data often occurs. This can be caused by a not continous data recording or poor storage. In this study, missing consecutive streamflow data are predicted using the principle of information entropy. Predictions are performed ​​using the complete monthly streamflow information from the nearby river. Data on average monthly streamflow used as a simulation sample are taken from observation stations Katulampa, Batubeulah, and Genteng, which are the Ciliwung Cisadane river areas upstream. The simulated prediction of missing streamflow data in 2002 and 2003 at Katulampa Station are based on information from Genteng Station, and Batubeulah Station. The mean absolute error (MAE) average obtained was 0,20 and 0,21 in 2002 and the MAE average in 2003 was 0,12 and 0,16. Based on the value of the error and pattern of filled gaps, this method has the potential to be developed further.
Keywords: Prediction, missing data, streamflow, entropy
Author: Santosa, B., Legono, D, Suharyanto
Journal Code: jptsipilgg140025

Artikel Terkait :