Data-Based Fuzzy TOPSIS for Alternative Ranking

Abstract: Technique  for  order  preference  by  similarity  (TOPSIS)  solves  multi-criteria  decision  making  (MCDM)  by  ranking  the alternatives.  When  the  attributes  are  not  deterministic,  a  Fuzzy  TOPSIS  method  is  applied.  The  traditional  fuzzy  TOPSIS depends on decision makers to determine alternative’s value which considered subjective. A new method named data-based fuzzy  TOPSIS  proposed  to  diminish  the  dependency  to  decision  maker.  The  proposed  algorithm  use  data  to  determine alternative’s values objectively. Subtractive Clustering (SC) and Fuzzy C-Mean (FCM) selected to transform crisp value data to fuzzy value data. Some modification applied to SC and FCM to obtain fuzzy triangular value needed by fuzzy TOPSIS.
Keywords: Decision support systems; Fuzzy TOPSIS; Fuzzy C-mean; Subtractive clustering
Author: Victor Utomo, Rachmat Gernowo
Jounal Code: jptinformatikagg130004

Artikel Terkait :