Klustering Dengan K-Means Berbasis LVQ Dan K-Means Berbasis OWA

Abstrak: Pada penelitian ini dilakukan pembandingan hasil klustering pada data car evaluation dengan menggunakan K-Means berbasis LVQ (Learning Vector Quantization) dan K-Means berbasis OWA (Ordered Weighted Averaging). Pada kedua metode ini sama-sama mempergunakan K-Means tetapi yang sudah mengalami modifikasi.
Hasil dari penelitian sebelumnya secara terpisah yang membandingkan metode K-Means modifikasi tersebut dengan K-Means konvensional menunjukkan bahwa kedua metode modifikasi tersebut sama-sama lebih baik daripada K-Means konvensional. Tetapi belum pernah ada penelitian yang membandingkan akurasi hasil klustering kedua metode modifikasi tersebut. Sehingga pada penelitian ini dilakukan klustering dengan menggunakan kedua metode tersebut untuk data car evaluation, karena dari penelitian sebelumnya kedua metode tersebut cukup handal dalam melakukan klustering.  Hasil dari ujicoba menunjukkan rata-rata hasil akurasi dimulai yang tertinggi adalah K-Means berbasis LVQ(86.50%), K-Means berbasis OWA(86,16%) kemudian K-Means konvensional (56,50%). Tetapi dengan urutan atribut yang benar dan pemilihan nilai alpha yang tepat yakni 0.8, K-Means berbasis OWA bisa menghasilkan akurasi yang lebih tinggi yakni 93.33%.
Kata kunci: K-Means berbasis LVQ, K-Means, K-Means berbasis OWA, bobot
Penulis: Dian Eka Ratnawati, Indriati
Kode Jurnal: jptinformatikadd150552

Artikel Terkait :