Pengklasifikasian Dokumen Berbahasa Indonesia Dengan Pengindeksan Berbasis LSI

Abstrak: Klasifikasi dokumen teks bertujuan untuk menentukan kategori suatu dokumen berdasarkan kesamaannya dengan kumpulan dokumen yang telah berlabel sebelumnya. Namun demikian kebanyakan metode klasifikasi yang ada saat ini dilakukan berdasarkan kata-kata kunci atau kata-kata yang dianggap penting dengan mengasumsikan masing-masing merepresentasikan konsep yang unik. Padahal pada kenyataanya beberapa kata yang mempunyai makna atau semantik sama seharusnya diwakili satu kata unik. Pada penelitian ini pendekatan berbasis LSI (Latent Semantic Indexing) digunakan pada KNN untuk mengklasifikasi dokumen berbahasa Indonesia. Pembobotan term dari dokumen-dokumen latih maupun uji menggunakan tf-idf,  yang direpresentasikan masing-masing dalam matrik term-dokumen A dan B. Selanjutnya matrik A didekomposisi menggunakan SVD untuk mendapatkan matrik U dan V yang tereduksi dengan k-rank. Kedua matrik U dan V digunakan untuk mereduksi B sebagai representasi dokumen uji.  Evaluasi kinerja sistem terbaik berdasarkan hasil  diperoleh pada klasifikasi KNN berbasis LSI tanpa stemming dengan threshould 2. Akan tetapi evaluasi kinerja terbaik berdasarkan waktu dicapai ketika KNN LSI dengan stemming pada threshould 5. Kinerja KNN berbasis LSI secara signifikan jauh lebih baik dibandingkan dengan KNN biasa baik dari sisi hasil maupun waktu.
Kata kunci: KNN, LSI, K-Rank, SVD, Klasifikasi dokumen
Penulis: Achmad Ridok, Indriati
Kode Jurnal: jptinformatikadd150562

Artikel Terkait :