Segmentasi Kendaraan Menggunakan Improve Blob Analysis (BA) Pada Video Lalu Lintas

Abstrak: Penggunaan citra digital untuk keperluan penelitian sudah banyak dilakukan, salah satunya yaitu segmentasi. Segmentasi berfungsi untuk mendeteksi objek - objek yang terdapat pada citra, sehingga hasil segmentasi sangat penting untuk proses selanjutnya. Pada penelitian ini diusulkan teknik optimasi hasil background subtraction menggunakan kombinasi frame difference (FD) atau difference image dengan filter SDGD dan running average (RA) atau background updating dengan filter SDGD untuk diterapkan pada blob analysis. Alasan utama menggunakan penggabungan kedua metode tersebut adalah karena seringnya terdapat piksel objek yang tidak mampu dideteksi sehingga akan mengurangi tingkat optimasi pengenalan objek. Hasil pengujian akurasi dari 10 data uji yang masing – masing terdiri dari 30 frame menunjukkan bahwa aplikasi ini memiliki nilai akurasi tertinggi yakni 90% untuk pengujian threshold dan 100% untuk pengujian ukuran structure element. Sehingga dapat disimpulkan bahwa aplikasi ini mampu melakukan segmentasi kendaraan dengan baik.
Kata kunci: filter SDGD, blob analysis, video lalu lintas, background subtraction
Penulis: Sutrisno, Imam Cholissodin, Rina Christanti, Candra Dewi, Nurul Hidayat
Kode Jurnal: jptinformatikadd150558

Artikel Terkait :