Kajian Algoritma GDBScan, Clarans dan Cure untuk Spatial Clustering

Abstract: Abstrak Spatial data mining merupakan salah satu bidang kajian dalam data mining dan menjadi salah satu bidang yang sangat cepat perkembangannya. Salah satu cabang dari spatial data mining adalah geographic data mining. Geographic data mining adalah penemuan pengetahuan baru dari sejumlah besar data geo-spatial (geo-reference). Beberapa metode dalam data mining telah dikembangkan para ahli. Salah satu metode yang paling banyak dikembangkan adalah clustering. Pada penelitian ini akan dilakukan kajian tentang tiga buah algoritma, yaitu algoritma density-based clustering, algoritma CLARANS clustering, serta algoritma CURE. Selanjutnyadilakuan implementasi dalam bentuk perangkat lunak. Studi kasus yang digunakan adalah clustering wilayah (peta) kota Surabaya berdasarkan parameter rasio jumlah penduduk miskin dan sangat miskin, kepadatan, dan tingkat kesejateraan tiap-tiap kelurahan kota Surabaya
Keywords: Geographic data mining; density-based clustering; CLARANS; CURE
Penulis: Budi Setiyono, Imam Mukhlash
Kode Jurnal: jpmatematikadd050009

Artikel Terkait :