Perbandingan Metode SVM, FUZZY-KNN, Dan BDT-SVM Untuk Klasifikasi Detak Jantung Hasil Elektrokardiografi

Abstrak: Perkembangan Ilmu Pengetahuan dan Teknologi (IPTEK) semakin pesat terutama dalam bidang kesehatan. Elektrokardiografi (EKG) merupakan salah satu metode untuk menentukan kondisi jantung manusia yang direpresentasikan dalam bentuk gelombang. Jantung merupakan organ vital manusia dan merupakan pertahanan hidup terakhir manusia selain otak. Di Indonesia berdasarkan data dari Kementrian RI tahun 2013, kematian akibat penyakit jantung ini diperkirakan sebesar 0.5% atau 883.447 orang dan berdasarkan gejala sebanyak 1.5% atau sekitar 2.650.340 orang. Kelas dari klasifikasi ini terdiri dari normal dan aritmia. Dimana aritmia terdiri dari atrial fibrillation, PVC bigeminy, dan ventricular tachycardia. Data didapatkan dari MIT-BIH Arrhytmia Database. Penelitian ini bertujuan untuk menentukan klasifikasi dari sinyal gelombang EKG tersebut dengan membandingkan metode Support Vector Machine dengan strategi One Against All, Fuzzy K-Nearest Neighbor, dan menggunakan metode Binary Decision Tree - Support Vector Machine. Hasil klasifikasi yang didapatkan dengan metode SVM memiliki rata-rata akurasi sebesar 81.30% menggunakan dataset dari fitur 3601 MLII dengan kernel Polynomial, metode Fuzzy-KNN 81.25% menggunakan jarak Manhattan, dan BDT-SVM sebesar 70.00% menggunakan kernel Polynomial dengan menggunakan data sebesar 140 dataset.
Kata Kunci: Support Vector Machine,  Binary Decision Tree, Fuzzy-KNN, Detak Jantung, Elektrokardiografi
Penulis: Uswatun Hasanah, Lintang Resita Mayangsari, Andhica Pratama, Imam Cholissodin
Kode Jurnal: jptinformatikadd160918

Artikel Terkait :