Sentimen Analisis Tweet Berbahasa Indonesia Dengan Deep Belief Network
Abstract: Sentiment analysis
is a computational research of opinion sentiment and emotion which is expressed
in textual mode. Twitter becomes the most popular communication device among
internet users. Deep Learning is a new area of machine learning research. It aims
to move machine learning closer to its main goal, artificial intelligence. The
purpose of deep learning is to change the manual of engineering with learning.
At its growth, deep learning has algorithms arrangement that focus on
non-linear data representation. One of the machine learning methods is Deep
Belief Network (DBN). Deep Belief Network (DBN), which is included in Deep
Learning method, is a stack of several algorithms with some extraction features
that optimally utilize all resources. This study has two points. First, it aims
to classify positive, negative, and neutral sentiments towards the test data.
Second, it determines the classification model accuracy by using Deep Belief
Network method so it would be able to be applied into the tweet classification,
to highlight the sentiment class of training data tweet in Bahasa Indonesia.
Based on the experimental result, it can be concluded that the best method in
managing tweet data is the DBN method with an accuracy of 93.31%, compared with Naive Bayes method which has an accuracy of
79.10%, and SVM (Support Vector Machine) method with an accuracy of 92.18%.
Penulis: Ira zulfa, Edi Winarko
Kode Jurnal: jptinformatikadd170004

Artikel Terkait :
Jp Teknik Informatika dd 2017
- ANALISIS PERBANDINGAN ONLINE DAN OFFLINE TRAINING PADA JARINGAN BACKPROPAGATION PADA KASUS PENGENALAN HURUF ABJAD
- PERANCANGAN APLIKASI PENGGAJIAN PADA PERGURUAN TINGGI (STUDI KASUS SEKOLAH TINGGI XYZ)
- PERBANDINGAN RAPID CENTROID ESTIMATION (RCE) — K NEAREST NEIGHBOR (K-NN) DENGAN K MEANS — K NEAREST NEIGHBOR (K-NN)
- SISTEM PENDETEKSIAN KEMIRIPAN JUDUL SKRIPSI MENGGUNAKAN ALGORITMA WINNOWING
- PENERAPAN DATAMINING PADA POPULASI DAGING AYAM RAS PEDAGING DI INDONESIA BERDASARKAN PROVINSI MENGGUNAKAN K-MEANS CLUSTERING
- SISTEM PENDUKUNG KEPUTUSAN PENERIMA ZAKAT DENGAN METODE SIMPLE ADDITIVE WEIGHTING
- IMPLEMENTASI TEKNOLOGI FRAMEWORK YII PADA APLIKASI BERBASIS WEB
- SIMULASI INTERKONEKSI ANTARA AUTONOMOUS SYSTEM (AS) MENGGUNAKAN BORDER GATEWAY PROTOCOL (BGP)
- Knowledge Management System Model pada Forum diskusi Petani Buah Naga menggunakan CMS phpBB
- ANALISA PENENTUAN PERUBAHAN CALON PENERIMA RASTRA (BERAS SEJAHTERA) DENGAN METODE SIMPLE ADDITIVE METHOD (SAW) DI DESA HUIDU KABUPATEN GORONTALO
- ANALISIS PENGGUNAAN PARALLEL PROCESSING MULTITHREADING PADA RESILIENT BACKPROPAGATION
- PERBANDINGAN MAINTAINABILITY, FLEKSIBILITY, TESTABILITY PADA CMS OPEN SOURCE E-COMMERCE
- ANALISIS DAN IMPLEMENTASI REPORTING SERVICE PADA APLIKASI ABSENSI PNS MENGGUNAKAN SSRS
- PENGEMBANGAN WEBSITE DINAMIS MENGGUNAKAN ASP.NET MVC DAN SQL SERVER DENGAN METODE RAD (STUDI KASUS: PT X)
- REVIEW KONSEP RESPONSIVE DESIGN DENGAN FRAMEWORK MATERIALIZE PADA WEBSITE
- Pengaruh Fungsi Aktivasi, Optimisasi dan Jumlah Epoch Terhadap Performa Jaringan Saraf Tiruan
- Executive Information System Pada UPW (Usaha Perjalanan Wisata) Berbasis Web
- Pengukuran Usability Sistem Informasi Online (SION) STIKOM Bali
- Perancangan Aplikasi Penyuluhan Kesehatan Ibu dan Anak
- Model Evaluasi Rekaman Percakapan Di Audio Forensik
- Perencanaan Strategi Pemasaran Penjualan Alat Kesehatan (Studi Kasus: PT. Cahya Laksmi Abadi)
- Perencanaan Strategi Pemasaran (Studi Kasus : STIKOM Bali)
- Pengaruh Brand Image terhadap Perceived Value Pelanggan di STIKOM Bali
- Analisis Pengukuran Tingkat Efektivitas dan Efisiensi Sistem Informasi Manajemen Surat STIKOM Bali
- Perancangan Aplikasi Pocket Map Untuk Desa Wisata