Geometric Model for Human Body Orientation Classification

Abstract: This  paper proposes  an approach  for cal- culating  and estimating  human body orientation  using geometric model. A novel framework integrating gradient shape and texture model of the human body orientation is proposed.  The gradient  is a natural way for describing the human  shapes, while the texture  explains the body characteristic. The framework  is then combined with the random  forest classifier to obtain a robust  class  differ- ence  of the human body orientation. Experiments and comparison results are provided to show the advantages of our system over state-of-the-art. For both modeled and un-modeled gradient-texture  features with random forest classifier, they achieve the highest accuracy on separating each human orientation   class, respectively  56.9% and 67.3% for TUD-Stadtmitte  dataset.
Keywords: Human Body Orientation; Histogram of Oriented Gradient; Local Binary Pattern; Geometric Model
Author: Igi Ardiyanto
Journal Code: jptinformatikagg150016

Artikel Terkait :